
On Generalized Authorization Problems∗

S. Schwoon† S. Jha‡ T. Reps‡ S. Stubblebine§

Abstract

This paper defines a framework in which one can formal-
ize a variety of authorization and policy issues that arise in
access control of shared computing resources. Instantia-
tions of the framework address such issues as privacy, re-
cency, validity, and trust. The paper presents an efficient al-
gorithm for solving all authorization problems in the frame-
work; this approach yields new algorithms for a number of
specific authorization problems.

1 Introduction

The main issues in access control of shared comput-
ing resources are authentication, authorization and enforce-
ment. Identification of principals is handled by authen-
tication. Authorization addresses the following question:
should a request r by a specific principal K be allowed?
Enforcement addresses the problem of implementing the
authorization during an execution. In a centralized sys-
tem, authorization is based on the closed-world assumption,
i.e., all authorized parties are known and trusted. In a dis-
tributed system where all the parties are not known a pri-
ori, the closed-world assumption is not applicable. Trust
management systems [9] address the authorization problem
in the context of distributed systems by requiring that au-
thorization and access-control policies be defined explic-
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itly, using an appropriate specification language, and re-
lying on an algorithm to determine when a specific re-
quest is allowable. A survey of trust management sys-
tems, along with a formal framework for understanding
them, is presented in [49]. Several trust management sys-
tems, such as Binder [18], Keynote [8], Referee [15], and
SPKI/SDSI [19], have been proposed. Our work is pre-
sented in the context of SPKI/SDSI, but several aspects of
the approach should carry over to other trust management
systems and authorization frameworks.

In SPKI/SDSI, principals are the public keys, i.e., the
identity of a principal is established by checking the valid-
ity of the corresponding public key. In SPKI/SDSI, name
certificates define the names available in an issuer’s local
name space; authorization certificates grant authorizations,
or delegate the ability to grant authorizations. The fun-
damental problem in SPKI/SDSI (or any other trust man-
agement system) is the authorization problem (AP), which
is defined as follows: given a security policy—which in
SPKI/SDSI is represented by a set of name and authoriza-
tion certificates—can a principal K access resource R?

Certificate-chain discovery refers to the problem of find-
ing a “proof” that K can access resource R. (In the case of
SPKI/SDSI, a proof is a chain of certificates.) If found, the
proof can be presented by K to R. R checks the validity
of the proof, and if the proof is valid, K is allowed access
to R. Therefore, algorithms for certificate-chain discovery
can also be used in frameworks such as proof-carrying au-
thorization [3]. An efficient certificate-chain-discovery al-
gorithm for SPKI/SDSI was presented by Clarke et al. [16].
An improved algorithm was presented by Jha and Reps [24].
The latter algorithm is based on translating SPKI/SDSI cer-
tificates to rules in a pushdown system. In [24] it was also
demonstrated how this translation enables many other ques-
tions to be answered about a security policy expressed as a
set of certificates.

In this paper, we generalize the pushdown-systems ap-
proach to enable it to address important security-policy is-
sues such as privacy, recency, validity, and trust. For in-
stance, consider the following authorization example: sup-
pose that company X provides additional insurance to cover
prescription-drug expenses that are not covered by a pa-
tient’s health-maintenance organization (HMO). For exam-
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ple, the HMO might have a very high deductible for drugs,
which will be covered by the additional insurance. How-
ever, company X only wants to provide this service to pa-
tients of a certain hospital H . For Alice to be able to buy
insurance, she needs to prove to X that she is a patient of
H . Suppose that there are two certificate chains that prove
that Alice is a patient of H , where one reveals that Alice
is a patient in the internal-medicine clinic and the other re-
veals that Alice is a patient in the AIDS clinic. For obvious
reasons Alice will prefer to use the former chain. In other
words, Alice prefers a certificate chain that reveals the least
amount of information about her. Such privacy-related is-
sues can be addressed in our generalized framework.

In the context of SPKI/SDSI, assume that we are given
a metric µ on certificate chains, and hence on proofs of au-
thorization. The details of the metric depend on the spe-
cific issue being addressed. In the generalized authoriza-
tion problem (GAP) we are given a principal K, a set of
name and authorization certificates C, a resource R, and a
metric µ on certificate chains. The question that GAP ad-
dresses is the same as AP—i.e., given C, is K authorized to
access resource R?—however, an authorization proof that
solves a GAP minimizes or maximizes the given metric (de-
pending on the application). We demonstrate that several
security-policy issues in trust management systems can be
cast as GAPs with appropriate metrics. In particular, we
demonstrate how an extension of pushdown systems, called
weighted pushdown systems, can be used to solve such gen-
eralized authorization problems.

The algorithm for solving GAPs can be thought of
as a generalization of the certificate-chain-discovery algo-
rithm. The general strategy is as follows: the set of labeled
SPKI/SDSI certificates is first translated to a weighted push-
down system.1 After the translation, the answer is obtained
by solving a generalized shortest-path problem [27, 46, 34].

The main contributions of the work reported in the paper
are as follows:

• The GAP framework. We define the generalized au-
thorization problem and show how versions of several
types of security issues related to authorization can be
handled in the GAP framework.

• An efficient algorithm for solving GAPs. We present
an efficient algorithm for solving GAPs. This yields
several new algorithms for a number of specific autho-
rization problems.

• A prototype implementation. The algorithms de-
scribed in the paper have been implemented in a library

1In a GAP, each certificate is labeled with a value. However, a label
might depend on some global property. For example, for recency policies
a certificate’s value represents the time the certificate was issued, or last
known to be current.

that provides functionality for solving GAPs. The li-
brary has been made available on the Internet [42] and
may also be used by third parties.

The remainder of the paper is organized as follows: Sec-
tion 2 provides background on SPKI/SDSI. Section 3 de-
fines the GAP framework and discusses several possible
applications of it. Section 4 provides background on push-
down systems (PDSs). Section 5 reviews the connection
between SPKI/SDSI and PDSs. Section 6 defines weighted
PDSs, and shows how an analysis of the transition system
defined by a weighted PDS can be used to solve GAPs.
Section 7 returns to the discussion of applications of the
GAP framework. Section 8 discusses related work. Ap-
pendix A describes an enhancement to the algorithm de-
scribed in Section 6 to generate witnesses or proofs of au-
thorization.

2 Background on SPKI/SDSI

2.1 Principals and Names

In SPKI/SDSI, all principals are represented by their
public keys, i.e., the principal is its public key. A princi-
pal can be an individual, process, host, or any other active
entity. K denotes the set of public keys. Specific keys are
denoted by K, KA, KB , K ′, etc. An identifier is a word
over some alphabet Σ. The set of identifiers is denoted
by A. Identifiers will be written in typewriter font, e.g.,
A and Bob.

A term is a key followed by zero or more identifiers.
Terms are either keys, local names, or extended names. A
local name is of the form K A, where K ∈ K and A ∈ A.
For example, K Bob is a local name. Local names are im-
portant in SPKI/SDSI because they create a decentralized
name space. The local name space of K is the set of local
names of the form K A. An extended name is of the form
K σ, where K ∈ K and σ is a sequence of identifiers of
length greater than one. For example, K UW CS faculty is
an extended name.

2.2 Certificates

SPKI/SDSI has two types of certificates, or “certs”:
Name Certificates (or name certs): A name cert provides a
definition of a local name in the issuer’s local name space.
Only key K may issue or sign a cert that defines a name
in its local name space. A name cert C is a signed four-
tuple (K, A, S, V ). The issuer K is a public key and the
certificate is signed by K. A is an identifier. The subject S is
a term. Intuitively, S gives additional meaning for the local
name K A. V is the validity specification of the certificate.
Usually, V takes the form of an interval [t1, t2], i.e., the cert
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is valid from time t1 to t2 inclusive. A validity specification
can also take the form of an on-line check to be performed.
Authorization Certificates (or auth certs): An auth cert
grants or delegates a specific authorization from an issuer
to a subject. Specifically, an auth cert C is a five-tuple
(K, S, D, T, V ). The issuer K is a public key, which is also
used to sign the cert. The subject S is a term. If the delega-
tion bit D is turned on, then a subject receiving this autho-
rization can delegate this authorization to other principals.
The authorization specification T specifies the permission
being granted; for example, it may specify a permission to
read a specific file, or a permission to login to a particular
host. The validity specification V for an auth cert is the
same as in the case of a name cert.

A request r is a triple (K ′, R, T ′) consisting of princi-
pals K ′ and R, where R is a resource that K ′ is trying to
access, and an authorization specification T that K ′ is try-
ing to exercise on R. The goal of certificate-chain discov-
ery is to prove whether the request is valid. As described
in Clarke et al. [16], we remove all “useless” certificates as
follows:

• Remove every name and auth cert that has an invalid
validity specification (e.g., an expired validity specifi-
cation).

• Remove every auth cert C = (K, S, D, T, V ) for
which T does not imply the authorization specifica-
tion T ′ of the request.

In the rest of the paper, we assume that a request r =
(K ′, R, T ′) is given and the set of certificates does not con-
tain useless certificates.

We will treat certs as rewrite rules:

• A name cert (K, A, S, V ) will be written as K A −→
S.

• An auth cert (K, S, D, T, V ) will be written as
K

�
−→ S

�
if the delegation bit D is turned on;

otherwise, it will be written as K
�

−→ S � .

In authorization problems, we only consider valid certifi-
cates, so the validity specification V for a certificate does
not appear as part of its rewrite rule. However, for cer-
tain generalized authorization problems V is used to derive
weights for rules.

2.3 The Authorization Problem in SPKI/SDSI

In traditional discretionary access control, each protected
resource has an associated access-control list, or ACL, de-
scribing which principals have various permissions to ac-
cess the resource. An auth cert (K, S, D, T, V ) can be

viewed as an ACL entry, where keys or principals repre-
sented by the subject S are given permission to access re-
source K.

A term S appearing in the rules can be viewed as a string
over the alphabetK∪A, in which elements of K appear only
in the beginning. For uniformity, we also refer to strings of
the form S

�
and S � as terms. Assume that we are given

a rewrite rule L −→ R corresponding to a cert. Consider
a term S = LX . In this case, the rewrite rule L −→ R

applied to the term S (denoted by (L −→ R)(S)) yields
the term RX . Therefore, a rule can be viewed as a function
from terms to terms, for example,

(KA Bob −→ KB)(KA Bob myFriends) =

KB myFriends

Consider two rules c1 = (L1 −→ R1) and c2 = (L2 −→
R2), and, in addition, assume that L2 is a prefix of R1, i.e.,
there exists an X such that R1 = L2X . Then the composi-
tion c2 ◦ c1 is the rule L1 −→ R2X . For example, consider
the two rules:

c1 : KA friends −→ KA Bob myFriends

c2 : KA Bob −→ KB

The composition c2 ◦ c1 is KA friends −→
KB myFriends. Two rules c1 and c2 are called compat-
ible if their composition c2 ◦ c1 is well defined.2

A problem that often needs to be solved is the autho-
rization question: “Given a set of certs C and a request
r = (K ′, R, T ′), is K ′ allowed to exercise authorization T ′

on R?” A certificate-chain-discovery algorithm provides
more than just a simple yes/no answer to the authorization
question; in the case of a yes answer, it identifies a chain of
certificates to prove the result. Formally, certificate-chain
discovery attempts to find, after removing useless certifi-
cates, a certificate chain ck ◦ · · · c1 such that

(ck ◦ · · · c1)(R
�

) ∈ {K ′ �
, K ′ � }.

Intuitively, (ck ◦ · · · c1) represents a path from R, the re-
source, to either K ′ �

or K ′ � , representing “permission
for K ′ to access” with and without delegation, respectively;
the elimination of useless certs ensures that the chain repre-
sents the authorization specification T ′.

Clarke et al. [16] presented an algorithm for certificate-
chain discovery in SPKI/SDSI with O(n2

K |C|) time com-
plexity, where nK is the number of keys and |C| is the sum
of the lengths of the right-hand sides of all rules in C. Jha
and Reps [24] presented a different algorithm, based on the
theory of pushdown systems.

2Note that in general the composition operator ◦ is not associative. For
example, c3 can be compatible with c2◦c1, but c3 might not be compatible
with c2. Therefore, c3 ◦ (c2 ◦ c1) can exist when (c3 ◦ c2) ◦ c1 does not
exist. However, when (c3◦c2)◦c1 exists, so does c3◦(c2◦c1); moreover,
the expressions are equal when both are defined. Thus, we allow ourselves
to omit parentheses and assume that ◦ is right associative.
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3 The Generalized Authorization Problem

In this section, we formally define the generalized autho-
rization problem, or GAP. Later in the section, we show that
several issues, such as privacy, validity, recency, and trust,
can be formulated in the GAP framework. In this frame-
work, certificates are labeled with weights that are drawn
from a bounded idempotent semiring.

Definition 3.1 A bounded idempotent semiring is a quintu-
ple (D,⊕,⊗, 0, 1), where D is a set, 0 and 1 are elements
of D, and ⊕ (the combine operation) and ⊗ (the extend op-
eration) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral
element, and ⊕ is idempotent (i.e., for all a ∈ D, a ⊕
a = a).

2. (D,⊗) is a monoid with the neutral element 1.

3. ⊗ distributes over ⊕, i.e. for all a, b, c ∈ D we have

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and
(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

4. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D,
a ⊗ 0 = 0 = 0 ⊗ a.

5. In the partial order v defined by: ∀a, b ∈ D, a v b iff
a ⊕ b = a, there are no infinite descending chains.

A weighted SPKI/SDSI system WSS is a 3-tuple
(C,S, f), where C is a set of certs, S = (D,⊕,⊗, 0, 1)
is a bounded idempotent semiring, and f : C → D assigns
weights to the certs in C. We extend the function f to cer-
tificate chains in a natural way, i.e., given a certificate chain
ck ◦ ck−1 ◦ · · · ◦ c1, f(ck ◦ ck−1 ◦ · · · ◦ c1) is defined as
f(c1) ⊗ · · · ⊗ f(ck−1) ⊗ f(ck).

Definition 3.2 Given a weighted SPKI/SDSI system
WSS = (C,S, f) and a request r = (K ′, R, T ′),
proof (C, r) denotes the set of certificate chains that prove
that request r can be fulfilled. Formally, proof (C, r) is the
set of certificate chains ck ◦ · · · ◦ c1 not containing any
useless certificates such that:

(ck ◦ · · · c1)(R
�

) ∈ {K ′ �
, K ′ � }

The generalized authorization problem (GAP) asks the
following two questions: (1) Is proof (C, r) non-empty? (2)
If proof (C, r) is non-empty, then find the following two
quantities:

• δ :=
⊕

{ f(cc) | cc ∈ proof (C, r) };

• a witness set of certificate chains ω ⊆ proof (C, r)
such that

⊕

cc∈ω

f(cc) = δ.

Certificates weights
KX

�
−→ KH patient � (1) I

KH patient −→ KH−AIDS patient (2) I

KH patient −→ KH−IM patient (3) I

KH−AIDS patient −→ KAlice (4) S

KH−IM patient −→ KAlice (5) I

Figure 1. A set of weighted certificates.

Notice that the extender operation ⊗ is used to calculate the
value of a certificate chain. The value of a set of certificate
chains is computed using the combiner operation⊕. In gen-
eral, it is enough for ω to contain only a finite set of minimal
elements (i.e., minimal with respect to the partial order v).
Intuitively, GAP attempts to find a set of certificate chains
proving that K ′ can access resource R such that the combi-
nation (using the operator

⊕

) of their weights is minimal.
(Definition 3.2 actually defines a more general machinery
than required for the SPKI/SDSI certificate-chain-discovery
problem discussed in Sections 2.2 and 2.3; the problem de-
fined here allows a witness set of certificate chains to be
identified.)

We now demonstrate that several authorization-related
problems can be cast in this framework.

Privacy-preserving certificate chains
We return to the example described in the Introduction, in
which company X offers additional insurance to patients of
a certain hospital H . The certificates relevant to the prob-
lem are shown in Figure 1. KX

�
represents the service of-

fered, i.e., the additional insurance offered by company X .
The filled square represents the fact that this authorization
cannot be delegated, e.g., an eligible patient cannot dele-
gate the permission to buy insurance to one of their friends.
The principals corresponding to the AIDS and internal-
medicine clinics in hospital H are denoted by KH−AIDS

and KH−IM . Alice is a patient in both clinics.

Suppose that Alice wants to buy the insurance. In this
case, both (4) ◦ (2) ◦ (1) and (5) ◦ (3) ◦ (1) are equal to
KX

�
−→ KAlice � . However, the certificate chain

(4) ◦ (2) ◦ (1) reveals that Alice probably has AIDS, which
is information that Alice may not wish to reveal to company
X . Therefore, Alice would prefer to offer the certificate
chain (5) ◦ (3) ◦ (1) to company X ; it proves that she is
authorized to buy additional insurance, but reveals the least
amount of information about her.

Privacy can be modeled in the GAP framework using the
semiring (D,⊕,⊗, 0, 1), defined as follows: D = {I, S},
where I and S stand for “insensitive” and “sensitive”, re-
spectively. The 0 and 1 elements are S and I , respectively.
The ⊕ and ⊗ operators are defined as follows (where x de-
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notes either S or I):

I ⊕ x = x ⊕ I = I and S ⊕ x= x ⊕ S = x

S ⊗ x = x ⊗ S= S and I ⊗ x = x ⊗ I = x

It is easy to check that conditions 1 − 4 of Definition 3.1
are satisfied. Condition 5 is trivially satisfied because D

is finite. The weights for the certificates are shown in Fig-
ure 1: certificate (4), KH−AIDS patient −→ KAlice,
is labeled S because it reveals that Alice is a patient in the
AIDS clinic; all other certificates are labeled I . The weights
of the certificate chain (4) ◦ (2) ◦ (1) and (5) ◦ (3) ◦ (1) are
I ⊗ I ⊗ S = S and I ⊗ I ⊗ I = I , respectively. Ob-
viously, Alice prefers the certificate chain with weight I . In
Section 6, we show how Alice can discover such a certifi-
cate chain.

Maximally-valid certificate chain. Let V (c) be the ex-
piration value of cert c, i.e., the cert c will expire at time
Tcurrent + V (c), where Tcurrent is the current time. The
expiration value of a certificate chain ck ◦ ck−1 ◦ · · · ◦ c1

is mink
i=1 V (ci). Suppose that Alice wants to login to host

H . If Alice provides a certificate chain that is only valid for
two minutes, then she will be logged off by the host after
two minutes. Thus, Alice wants to find a certificate chain
that authorizes her to login to H , but has the maximum ex-
piration value among all such certificate chains.

Most-recent certificate chain. Let R(c) be the time (rel-
ative to the current time) when the cert c was issued or an
on-line check was performed on cert c, i.e., Tcurrent −R(c)
is the actual time of issue or the last on-line check. We call
R(c) the recency associated with cert c. The recency of a
certificate chain ck◦ck−1◦· · ·◦c1 is equal to maxk

i=1 R(ci).
Suppose that Alice wants to login to host H . For risk-
reduction purposes, host H might mandate the use of a cer-
tificate chain whose recency is no more than ten minutes. In
this case, Alice wishes to find a certificate chain that autho-
rizes her to login to H and has the minimum recency among
all such chains. Let ck ◦ ck−1 ◦ · · · ◦ c1 be the certificate
chain with minimum recency. If maxk

i=1 R(ci) is less than
or equal to ten minutes, then Alice can use the certificate
chain to login to H .

Certificate chains with maximal trust
Assume that each certificate c is assigned a trust level Tr(c)
by the issuer of the certificate. Intuitively, Tr(c) denotes
the confidence that the issuer of c has in the relationship
expressed by the certificate c. The trust level of a certificate
chain ck◦ck−1◦· · ·◦c1 is

⊗k
i=1 Tr(ci), where

⊗

is defined
in Table 1. Suppose that Alice wants to use server S, but
S requires a certificate chain that has a trust level above a
certain value v. In this case, Alice wants to find a certificate
chain that authorizes her to use S, but has the maximal trust
level among all such chains. If such a certificate chain has
a trust level above v, Alice can use S.

D ⊕ ⊗ 0 1
Validity � ∪ {±∞} max min −∞ +∞
Recency � ∪ {∞} min max ∞ 0
Trust {N, L, M, H} u t N H

Table 1. Semirings for validity, recency, and
trust.

Formalization using semirings. The semirings for the
three cases discussed above are shown in Table 1. In
the case of the maximal-trust example, the trust levels
are drawn from a totally ordered set with four elements
{N, L, M, H}, where N w L w M w H . Elements L,
M , and H denote low, medium, and high levels of trust, re-
spectively. The element N stands for “no link”.3 The join
t and the meet u operator on this totally ordered set are
defined as follows (where x and y are arbitrary elements of
{N, L, M, H}):

x t y =

{

x if x w y

y otherwise
x u y =

{

y if x w y

x otherwise

4 Pushdown Systems

A pushdown system is a transition system whose states
involve a stack of unbounded length.

Definition 4.1 A pushdown system is a triple P =
(P, Γ, ∆), where P and Γ are finite sets called the control
locations and the stack alphabet, respectively. A configura-
tion of P is a pair 〈p, w〉, where p ∈ P and w ∈ Γ∗. ∆ con-
tains a finite number of rules of the form 〈p, γ〉 ↪→P 〈p′, w〉,
where p, p′ ∈ P , γ ∈ Γ, and w ∈ Γ∗, which define a tran-
sition relation between configurations of P as follows:

If r = 〈p, γ〉 ↪→P 〈p′, w〉, then 〈p, γw′〉
〈r〉

==⇒P 〈p′, ww′〉
for all w′ ∈ Γ∗.

We also write c ⇒P c′ to express that there is some rule r

such that c
〈r〉

==⇒P c′, and we omit the index P if P is
understood. The reflexive and transitive closure of ⇒ is
written ⇒∗. Given a set of configurations C, we define
pre∗(C) := { c′ | ∃c ∈ C : c′ ⇒∗ c } and post∗(C) :=
{ c′ | ∃c ∈ C : c ⇒∗ c′ } to be the sets of configurations
that are backwards and forwards reachable from elements
of C, respectively.

Without loss of generality, we assume henceforth that for
every 〈p, γ〉 ↪→ 〈p′, w〉 we have |w| ≤ 2; this is not restric-
tive because every pushdown system can be simulated by

3Note that “highest level of trust” is denoted by the element H, which
is lowest in the total order.
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another one that obeys this restriction and is larger by only
a constant factor; e.g., see [24].

Because pushdown systems have infinitely many config-
urations, we need some symbolic means to represent sets of
configurations. We will use finite automata for this purpose.

Definition 4.2 Let P = (P, Γ, ∆) be a pushdown system.
A P-automaton is a quintuple A = (Q, Γ,→, P, F ) where
Q ⊇ P is a finite set of states, → ⊆ Q×Γ×Q is the set of
transitions, and F ⊆ Q are the final states. The initial states
of A are the control locations P . A configuration 〈p, w〉 is
accepted by A if p

w−−→∗ q for some final state q. A set of
configurations of P is regular if it is recognized by some P-
automaton. (If P is understood, we omit the prefix P and
merely refer to “automaton”.)

A convenient property of regular sets of configurations is
that they are closed under forward and backward reachabil-
ity. In other words, given an automaton A that accepts the
set C, one can construct automataApre∗ and Apost∗ that ac-
cept pre∗(C) and post∗(C), respectively. The general idea
behind the algorithm for pre∗ [11, 20] is as follows:

Let P = (P, Γ, ∆) be a pushdown system and A =
(Q, Γ,→0, P, F ) be a P-automaton accepting a set of con-
figurations C. Without loss of generality we assume that
A has no transition leading to an initial state. pre∗(C)
is obtained as the language of an automaton Apre∗ =
(Q, Γ,→, P, F ) derived from A by a saturation procedure.
The procedure adds new transitions to A according to the
following rule:

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′
w−−→∗ q in the current

automaton, add a transition (p, γ, q).

In [20] an efficient implementation of this procedure is
given, which requires O(|Q|2|∆|) time and O(|Q| |∆| +
|→0|) space. Moreover, another procedure (and implemen-
tation) are presented for constructing a P-automaton that
accepts post∗(C). In the following, we show that exten-
sions of these procedures provide efficient algorithms for
discovering the certificate chains needed in generalized au-
thorization problems, such as those discussed in Section 3.
We will present these extensions for pre∗; the same basic
ideas apply to post∗, but this is omitted for lack of space.

5 The Connection Between SPKI/SDSI and
Pushdown Systems

The following correspondence between SPKI/SDSI and
pushdown systems was presented in [24]: let C be a (finite)
set of certificates such that KC and IC are the keys and iden-
tifiers that appear in C, respectively; with C we associate the
pushdown system PC = (KC , IC ∪ {

�
, � }, ∆C), i.e., the

keys of C are the control locations and the identifiers form
the stack alphabet; the rule set ∆C is defined as follows:

〈KX ,
�
〉 ↪→ 〈KH , patient � 〉 (1)

〈KH , patient〉 ↪→ 〈KH−AIDS , patient〉 (2)
〈KH , patient〉 ↪→ 〈KH−IM , patient〉 (3)
〈KH−AIDS , patient〉 ↪→ 〈KAlice, ε〉 (4)
〈KH−IM , patient〉 ↪→ 〈KAlice, ε〉 (5)

Figure 2. The PDS rules that correspond to
Figure 1.

• if C contains a name cert K A −→ K ′ σ (where σ

is a sequence of identifiers), then ∆C contains a rule
〈K, A〉 ↪→ 〈K ′, σ〉;

• if C contains an auth cert K
�

−→ K ′ σ b (where b ∈
{

�
, � }), then ∆C contains a rule 〈K,

�
〉 ↪→ 〈K ′, σb〉.

For instance, consider the set of certificates C from Fig-
ure 1. The corresponding pushdown system PC has the con-
trol locations {KX , KH , KH−AIDS , KH−IM , KAlice}, the
stack alphabet {patient,

�
, � }, and the set of rules listed

in Figure 2.
The usefulness of this correspondence stems from the

following simple observation: A configuration 〈K, σ〉 of
PC can reach another configuration 〈K ′, σ′〉 if and only if
C contains a chain of certificates that, when applied to K σ,
yield K ′ σ′. For instance, in the example above Alice can
prove that she has the right to buy additional insurance be-
cause 〈KX ,

�
〉 ⇒∗ 〈KAlice, � 〉. In the authorization prob-

lem, we are given a set of certs C and a request (K ′, R, T ′).
In terms of the PDS PC corresponding to certificate set
C, the authorization problem can be stated as follows: K ′

should be granted access to R iff the condition 〈R,
�
〉 ∈

pre∗({〈K ′,
�
〉, 〈K ′, � 〉}) holds. Thus, in the medical ex-

ample, we wish to determine whether 〈KX ,
�
〉 ∈ pre∗(S),

where S = {〈KAlice,
�
〉, 〈KAlice, � 〉}. The automaton

shown in Figure 3(a) accepts the set S. The set pre∗(S)
is shown in Figure 3(b). Because there is a transition
on the symbol

�
from state KX to the accepting state s,

〈KX ,
�
〉 ∈ pre∗(S). In other words, Alice is authorized to

buy additional insurance. (The extra annotations I (insen-
sitive) and S (sensitive) on the transitions indicate whether
the transitions involve sensitive information. The algorithm
for deriving these labels is presented in Section 6.)

6 Solving the Generalized Authorization
Problem

The types of problems treated in [24] could be charac-
terized as having a qualitative nature; they answer ques-
tions such as “Is a given principal allowed to access a given
resource?” In this section, we show how to answer ques-
tions that have an additional quantitative component, e.g.
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Figure 3. (a) Automaton representing the configurations S = {〈KAlice,
�
〉, 〈KAlice, � 〉}. (b) Automaton

representing the configurations in pre∗(S).

“How long is a given principal allowed to access a given
resource?” To do so, we consider pushdown systems whose
rules carry weights.

6.1 Weighted Pushdown Systems

We consider pushdown system whose rules are given val-
ues from some domain of weights. The weight domains of
interest are the bounded idempotent semirings from Defini-
tion 3.1.

Definition 6.1 A weighted pushdown system is a triple
W = (P ,S, f) such that P = (P, Γ, ∆) is a pushdown sys-
tem, S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring,
and f : ∆ → D is a function that assigns a value from D to
each rule of P .

Let σ ∈ ∆∗ be a sequence of rules. Using f , we can
associate a value to σ, i.e., if σ = [r1, . . . , rk], then we
define v(σ) := f(r1)⊗ · · · ⊗ f(rk). Moreover, for any two
configurations c and c′ of P , we let path(c, c′) denote the
set of all rule sequences [r1, . . . , rk] that transform c into c′,
i.e., c

〈r1〉===⇒ · · ·
〈rk〉===⇒ c′.

Definition 6.2 Given a weighted pushdown system W =
(P ,S, f), where P = (P, Γ, ∆), and a regular set of con-
figurations C ⊆ P ×Γ∗, the generalized pushdown reacha-
bility (GPR) problem is to find for each c ∈ P × Γ∗:

• δ(c) :=
⊕

{ v(σ) | σ ∈ path(c, c′), c′ ∈ C };

• a witness set of paths ω(c) ⊆
⋃

c′∈C

path(c, c′) such

that
⊕

σ∈ω(c)

v(σ) = δ(c).

In general, it is enough for ω(c) to contain only a finite
set of paths whose values are minimal elements of { v(σ) |

σ ∈ path(c, c′), c′ ∈ C }, i.e., minimal with respect to the
partial order v defined in Definition 3.1(5).

For the remainder of this section, let W denote a fixed
weighted pushdown system: W = (P ,S, f), where P =
(P, Γ, ∆) and S = (D,⊕,⊗, 0, 1); let C denote a fixed
regular set of configurations, represented by a P-automaton
A = (Q, Γ,→0, P, F ) such that A has no transition leading
to an initial state.

The GPR problem is a multi-target meet-over-all-paths
problem on a graph. The vertices of the graph are the con-
figurations of P , and the edges are defined by P’s transition
relation. The target vertices are the vertices in C. Both the
graph and the set of target vertices can be infinite, but have
some built-in structure to them; in particular, C is a regular
set.

Because the GPR problem concerns infinite graphs, and
not just an infinite set of paths, it differs from other work
on meet-over-all-paths problems. As in the (ordinary)
pushdown-reachability problem [11, 20], the infinite nature
of the problem is addressed by reporting the answer in an
indirect fashion, namely, in the form of an annotated au-
tomaton. An answer automaton without its annotations will
be identical to an Apre∗ automaton created by the algorithm
of [20]. For each c ∈ pre∗(C), the values of δ(c) and ω(c)
can be read off from the annotations by following all ac-
cepting paths for c in the automaton; for c 6∈ pre∗(C), the
values of δ(c) and ω(c) are 0 and ∅, respectively.

The solution to the GPR problem is presented in several
stages:

• We first define a language that characterizes the se-
quences of transitions that can be made by a pushdown
system P and automaton A for C.

• We then turn to weighted pushdown systems and the
GPR problem. We use the language characteriza-
tions of transition sequences, together with previously
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known results on a certain kind of grammar problem
[46, 34] to obtain a solution to the GPR problem.

• However, the solution based on grammars is somewhat
inefficient; to improve the performance, we specialize
the computation to our case, ending up with an algo-
rithm for creating an annotated automaton that is quite
similar to the pre∗ algorithm from [20].

6.2 Languages that Characterize Transition Se-
quences

In this section, we make some definitions that will aid in
reasoning about the set of paths that lead from a configura-
tion c to configurations in a regular set C. We call this set
the reachability witnesses for c ∈ P ×Γ∗ with respect to C:
ReachabilityWitnesses(c, C) =

⋃

c′∈C path(c, c′).
It is convenient to think of PDS P and automaton A (for

C) as being combined in sequence, to create a combined
PDS, which we will call PA. PA’s states are P ∪ Q = Q,
and its rules are those of P , augmented with a rule 〈q, γ〉 ↪→
〈q′, ε〉 for each transition q

γ
−→ q′ in A’s transition set →0.

We say that a configuration c = 〈p, γ1γ2 . . . γn〉 is ac-
cepted by PA if there is a path to a configuration 〈qf , ε〉
such that qf ∈ F . Note that because A has no transitions
leading to initial states, PA’s behavior during an accept-
ing run can be divided into two phases—transitions during
which PA mimics P , followed by transitions during which
PA mimics A: once PA reaches a state in (Q − P ), it can
only perform a sequence of pops, possibly reaching a state
in F . If the run of PA does reach a state in F , in terms
of the features of the original P and A, the second phase
corresponds to automaton A accepting some configuration
c′ that has been reached by P , starting in configuration c. In
other words, PA accepts a configuration c iff c ∈ pre∗(C).

The first language that we define characterizes the pop
sequences of PA. A pop sequence for q ∈ Q, γ ∈ Γ,
and q′ ∈ Q is a sequence of PA’s transitions that, and
(i) starts in a configuration 〈q, γ〉, and (ii) ends in a con-
figuration 〈q′, ε〉. The family of pop sequences for a given
q, γ, and q′ can be characterized by the complete derivation
trees4 derived from nonterminal PS(q,γ,q′), using the gram-
mar shown in Figure 4.

Theorem 6.1 PDS PA has a pop sequence for q, γ, and
q′ iff nonterminal PS(q,γ,q′) of the grammar shown in Fig-
ure 4 has a complete derivation tree. Moreover, for each
derivation tree with root PS(q,γ,q′), a preorder listing of
the derivation tree’s production instances (where Figure 4
defines the correspondence between productions and PDS
rules) gives a sequence of rules for a pop sequence for q, γ,
and q′; and every such sequence of rules has a derivation
tree with root PS(q,γ,q′).

4A derivation tree is complete if it has is a terminal symbol at each leaf.

Proof: [Sketch] To shrink the stack by removing the stack
symbol on the left-hand side of each rule of PA, there must
be a transition sequence that removes each of the symbols
that appear in the stack component of the rule’s right-hand
side. In other words, a pop sequence for the left-hand-side
stack symbol must involve a pop sequence for each right-
hand-side stack symbol.

The left-hand and right-hand sides of the productions in
Figure 4 reflect the pop-sequence obligations incurred by
the corresponding rule of PA. 2

To capture the set ReachabilityWitnesses(〈p, γ1γ2 . . . γn〉, C),
where C is recognized by automaton A, we define a
context-free language given by the set of productions
shown in Figure 5.

This language captures all ways in which PDS
PA can accept 〈p, γ1γ2 . . . γn〉: the set of reach-
ability witnesses for 〈p, γ1γ2 . . . γn〉 corresponds to
the complete derivation trees derivable from nontermi-
nal Accepted[γ1γ2 . . . γn](p). The subtree rooted at
PS(qi−1,γi,qi) gives the pop sequence that PA performs to
consume symbol γi. (If there are no reachability witnesses
for 〈p, γ1γ2 . . . γn〉, there are no complete derivation trees
with root Accepted[γ1γ2 . . . γn](p).)

6.3 Weighted PDSs and Abstract Grammar Prob-
lems

Turning now to weighted PDSs, we will consider the
weighted version of PA, denoted by WA, in which
weighted PDS W is combined with A, and each rule
〈q, γ〉 ↪→ 〈q′, ε〉 that was added due to transition q

γ
−→ q′ in

A’s transition set →0 is assigned the weight 1.
We are able to reason about semiring sums (⊕) of

weights on the paths that are characterized by the context-
free grammars defined above using the following concept:

Definition 6.3 [34] Let (S,u) be a semilattice. An abstract
grammar over (S,u) is a collection of context-free gram-
mar productions, where each production θ has the form

X0 → gθ(X1, . . . , Xk).

Parentheses, commas, and gθ (where θ is a production) are
terminal symbols. Every production θ is associated with
a function gθ : Sk → S. Thus, every string α of termi-
nal symbols derived in this grammar (i.e., the yield of a
complete derivation tree) denotes a composition of func-
tions, and corresponds to a unique value in S, which we
call valG(α) (or simply val (α) when G is understood). Let
LG(X) denote the strings of terminals derivable from a
nonterminal X . The abstract grammar problem is to com-
pute, for each nonterminal X , the value

mG(X) := u
α∈LG(X)

valG(α).
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Production for each
(1) PS(q,γ,q′) → ε q

γ
−→ q′ ∈ →0

(2) PS(p,γ,p′) → ε 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆, p ∈ P

(3) PS(p,γ,q) → PS(p′,γ′,q) 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, p ∈ P, q ∈ Q

(4) PS(p,γ,q) → PS(p′,γ′,q′) PS(q′,γ′′,q) 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, p ∈ P, q, q′ ∈ Q

Figure 4. A context-free language for the pop sequences of PA, and the PA rules that correspond to
each production.

Production for each
(1) Accepting[γ1γ2 . . . γn](p,q) → PS(p,γ1,q1) PS(q1,γ2,q2) . . . PS(qn−1,γn,q) qi ∈ Q, for 1 ≤ i ≤ n − 1; and q ∈ F

(2) Accepted[γ1γ2 . . . γn](p) → Accepting[γ1γ2 . . . γn](p,q) q ∈ F

Figure 5. Set of productions.

Because the complete derivation trees with root
Accepted[γ1γ2 . . . γn](p) encode the transition sequences by
which WA accepts 〈p, γ1γ2 . . . γn〉, to cast the GPR as a
grammar problem, we merely have to attach appropriate
production functions to the productions so that for each rule
sequence σ, and corresponding derivation tree (with yield)
α, we have v(σ) = valG(α). This is done in Figure 6: note
how functions g2, g3, and g4 place f(r) at the beginning of
the semiring-product expression; this corresponds to a pre-
order listing of a derivation tree’s production instances (cf.
Theorem 6.1).

To solve the GPR problem, we appeal to the following
theorem:

Theorem 6.2 [46, 34] The abstract grammar problem for
G and (S,u) can be solved by an iterative computation that
finds the maximum fixed point, when the following condi-
tions hold:

1. The semilattice (S,u) has no infinite descending
chains.

2. Every production function gθ in G is distributive, i.e.,

g( u
i1∈I1

xi1 , . . . , u
ik∈Ik

xik
) = u

(i1,... ,ik)∈I1×···×Ik

g(xi1 , . . . , xik
)

for arbitrary, non-empty, finite index sets I1, . . . , Ik.

3. Every production function gθ in G is strict in 0 in each
argument.

The abstract grammar problem given in Figure 6 meets
the conditions of Theorem 6.2 because

1. By Definition 3.1, the ⊕ operator is associative, com-
mutative, and idempotent; hence (D,⊕) is a semilat-
tice. By Definition 3.1(5), (D,⊕) has no infinite de-
scending chains.

2. The distributivity of each of the production functions
g1, . . . , g6 over arbitrary, non-empty, finite index sets
follows from repeated application of Definition 3.1(3).

3. Production functions g3, . . . , g6 are strict in 0 in each
argument because 0 is an annihilator with respect to
⊗ (Definition 3.1(4)). Production functions g1 and g2

are constants (i.e., functions with no arguments), and
hence meet the required condition trivially.

Thus, one algorithm for solving the GPR problem
for a given weighted PDS W , initial configuration
〈p, γ1γ2 . . . γn〉, and regular set C (represented by automa-
ton A) is as follows:

• Create the combined weighted PDS WA.

• Define the corresponding abstract grammar problem
according to the schema shown in Figure 6.

• Solve this abstract grammar problem by finding the
maximum fixed point using chaotic iteration: for
each nonterminal X , the fixed-point-finding algorithm
maintains a value l(X), which is the current estimate
for X’s value in the maximum fixed-point solution;
initially, all l(X) values are set to 0; l(X) is updated
whenever a value l(Y ) changes, for any Y used on the
right-hand side of a production whose left-hand-side
nonterminal is X .

6.4 A More Efficient Algorithm for the GPR Prob-
lem

The approach given in the previous section is not very
efficient: for a configuration 〈p, γ1γ2 . . . γn〉, it takes
Θ(|Q|n−1|F |) time and space just to create the grammar
productions in Figure 6 with left-hand-side nonterminal
Accepting[γ1γ2 . . . γn](p,q). However, we can improve on
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Production for each
(1) PS(q,γ,q′) → g1(ε) (q, γ, q′) ∈ →0

g1 = 1
(2) PS(p,γ,p′) → g2(ε) r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆, p ∈ P

g2 = f(r)
(3) PS(p,γ,q) → g3(PS(p′,γ′,q)) r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆, p ∈ P, q ∈ Q

g3 = λa.f(r) ⊗ a

(4) PS(p,γ,q) → g4(PS(p′,γ′,q′), PS(q′,γ′′,q)) r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, p ∈ P, q, q′ ∈ Q

g4 = λa.λb.f(r) ⊗ a ⊗ b

(5) Accepting[γ1γ2 . . . γn](p,q) → qi ∈ Q, for 1 ≤ i ≤ n − 1, and q ∈ F

g5(PS(p,γ1,q1), PS(q1,γ2,q2), . . . , PS(qn−1,γn,q))
g5 = λa1.λa2 . . . λan.a1 ⊗ a2 ⊗ . . . ⊗ an

(6) Accepted[γ1γ2 . . . γn](p) → g6(Accepting[γ1γ2 . . . γn](p,q)) q ∈ F

g6 = λa.a

Figure 6. An abstract grammar problem for the GPR problem.

the algorithm of the previous section because not all instan-
tiations of the productions listed in Figure 6 are relevant to
the final solution; we want to prevent the algorithm from ex-
ploring useless nonterminals of the grammar shown in Fig-
ure 6.

Moreover, all GPR questions with respect to a given
target-configuration set C involve the same subgrammar
for the PS nonterminals. As in the (ordinary) pushdown-
reachability problem [11, 20], the information about
whether a complete derivation tree with root nonterminal
PS(q,γ,q′) exists (i.e., whether PS(q,γ,q′) is a productive non-
terminal) can be precomputed and returned in the form of
an (annotated) automaton of size O(|Q| |∆| + |→0|). Ex-
ploring the PS subgrammar lazily saves us from having to
construct the entire PS subgrammar. Productive nontermi-
nals represent automaton transitions, and the productions
that involve any given transition can be constructed on-the-
fly, as is done in Algorithm 1, shown in Figure 7.

It is relatively straightforward to see that Algorithm 1
solves the grammar problem for the PS subgrammar from
Figure 6: workset contains the set of transitions (PS non-
terminals) whose value l(t) has been updated since it was
last considered; in line 8 all values are set to 0. A function
call update(t, r, T ) computes the new value for transition t

if t can be created using rule r and the transitions in the or-
dered list T . Lines 9 and 10 process the rules of types (1)
and (2), respectively. Lines 11–17 represent the fixed-point-
finding loop: lines 13, 15, and 17 simulate the processing
of rules of types (3) and (4) that involve transition t on their
right-hand side; in particular, line 4 corresponds to invoca-
tions of production functions g3 and g4. Note that line 4
can change l(t) only to a smaller value (w.r.t. v). The it-
erations continue until the values of all transitions stabilize,
i.e., workset is empty.

From the fact that Algorithm 1 is simply a different way
of expressing the grammar problem for the PS subgram-

mar, we know that the algorithm terminates and computes
the desired result. Moreover, apart from operations having
to do with l, the algorithm is remarkably similar to the pre∗

algorithm from [20]—the only major difference being that
transitions are stored in a workset and processed multiple
times, whereas in [20] each transition is processed exactly
once. Thus, if ` is the length of the maximal-length de-
scending chain in the semiring and co is the maximal cost
of an extender or combiner operation, the time complexity
increases from the complexity of the unweighted case [20]
by a factor of ` · co, i.e. the GPR problem can be solved in
time O(co · |Q|2|∆| · `). (More efficient techniques that ap-
ply to certain semirings that are total orders are discussed in
Section 6.5.)

Given the annotated pre∗ automaton, the value of δ(c)
for any configuration c can be read off from the au-
tomaton by following all paths by which c is accepted—
accumulating a value for each path—and taking the meet of
the resulting value set. The value-accumulation step can be
performed using a straightforward extension of a standard
algorithm for simulating an NFA (cf. [1, Algorithm 3.4]).

Algorithm 1 is a dynamic-programming algorithm for
determining δ(c); Appendix A describes how to extend Al-
gorithm 1 to keep additional annotations on transitions so
that the path set ω(c) can be obtained.

6.5 Total Orderings

In the examples given in Section 3, the semirings all have
the following properties: (i) the ordering v is a total order-
ing; (ii) 1 is the least element with respect to v; and (iii)
for all a, b ∈ D, a ⊗ b w lub(a, b) (where lub denotes
“least upper bound”, or maximum, in the total order). In
such cases, there is a much more efficient algorithm for the
GPR problem based on ideas from Knuth’s generalization
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Algorithm 1
Input: a weighted pushdown system W = (P ,S, f)

where P = (P, Γ, ∆) and S = (D,⊕,⊗, 0, 1);
a P-Automaton A = (Q, Γ,→0, P, F ) that accepts C such that A has no transitions into P states

Output: a P-automaton Apre∗ = (Q, Γ,→, P, F ) that accepts pre∗(C)
a function l that maps every (q, γ, q′) ∈ → to the value of mG(PS(q,γ,q′))

in the abstract grammar problem defined in Figure 6;

1 procedure update(t, r, T )
2 begin
3 → := →∪ {t};
4 l(t) := l(t) ⊕ (f(r) ⊗ l(T (1)) ⊗ . . . ⊗ l(T (|T |)));
5 if l(t) changed value then workset := workset ∪ {t}
6 end
7
8 → := →0; l ≡ 0; workset := →0;
9 for all t ∈ →0 do l(t) := 1;

10 for all r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do update((p, γ, p′), r, ());
11 while workset 6= ∅ do
12 select and remove a transition t = (q, γ, q′) from workset ;
13 for all r = 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ ∆ do update((p1, γ1, q

′), r, (t));
14 for all r = 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ ∆ do
15 for all t′ = (q′, γ2, q

′′) ∈ → do update((p1, γ1, q
′′), r, (t, t′));

16 for all r = 〈p1, γ1〉 ↪→ 〈p′, γ2γ〉 ∈ ∆ do
17 if t′ = (p′, γ2, q) ∈ → then update((p1, γ1, q

′), r, (t′, t));
18 return ((Q, Γ,→, P, F ), l)

Figure 7. An on-the-fly algorithm for solving the grammar problem for the PS subgrammar from
Figure 6.

of Dijkstra’s algorithm for the shortest-path problem [27].5

• In Algorithm 1, workset is implemented using a pri-
ority queue, and the transition selected in line 12 is
always one with minimum value. Line 5 changes to

if l(t) changed value then

adjustPriorityQueue(worklist, t, l(t))

where adjustPriorityQueue(PQ, i, k) inserts item i

into a priority queue PQ with key k if i 6∈ PQ, and
changes the key of item i to k if i ∈ PQ already. With
this approach, the transitions processed form a non-
decreasing sequence; hence, no transition is selected
from workset more than once. (In the general case,
the label of a transition may change even if the tran-
sition has been selected before, causing it to be added
to workset again.) Compared to the PDS-reachability
problem for the unweighted case, all it costs to com-
pute the maximum fixed-point values is the cost of

5The approach that we describe also applies to a slightly larger class of
totally ordered abstract grammar problems studied by Ramalingam [34];
however, our examples all fall into the class defined above, which was
studied by Knuth [27].

maintaining a priority queue. Thus, the time complex-
ity becomes O(co · |Q|2|∆| · log(|Q| |∆| + |→0|)).

• The set ω(c) contains exactly one path.

7 Discussion

We now discuss several issues that arise in applying the
GAP framework.

Recency Policies. The recency metric presented in Sec-
tion 3 is rather simplistic compared to some others that
have been studied: recency policies can be based on a num-
ber of factors, such as the financial risk of the authenti-
cation/authorization decision [44], semantics and invalidity
rate of the certificate contents, and the security of the sys-
tem used to generate the certificate. In a realistic setting,
recency values of certificates need to be normalized. One
possibility is to base the normalization on the remaining
lifetime of the certificate (assuming the “not after” times in
the validity specification were appropriately chosen). Let
the lifetime of a certificate be L = Tnot after − Tcurrent
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(provided the certificate is still valid, i.e., Tcurrent is before
Tnot after), and let the recency of a certificate ci be defined
by Tcurrent−Tissue

L(ci)
. In this case, the semiring for recency is

( � ≥0 ∪ {∞}, min, max,∞, 0).6

Multiple Security Policies. Authorization policies may
be subject to multiple security policies. For example,
we might wish to satisfy simultaneously a most-recent
certificate-chain policy and a privacy-preserving policy.
One approach is the policy-priority approach, in which the
user declares the order of security-policy priorities; for in-
stance, privacy may be the first priority and recency the sec-
ond priority. Such problems can be addressed in the GAP
framework, when the component policies involve total or-
ders, by using pairs of values as semiring values—e.g., (pri-
vacy, recency) values—and defining ⊕ to be lexicographic
minimum [40, Section 6.4.1]. The GAP framework can also
handle partially ordered component policies, as well as the
situation where there is no clear preference among compo-
nent policies [40, Section 6.4.1].

Trust Policies. Several trust policies or metrics have been
proposed in the literature, such as [7, 31, 35, 36, 50].
Not all trust metrics can be efficiently modeled in the
GAP framework. For example, consider the proposed
Bounded Disjoint Paths (BDP) and Bounded Connective
Paths metric, which are are NP-hard and coNP-hard, re-
spectively [35]. Thus, there is little hope of finding an
efficient solution to these problems. We have not investi-
gated whether the approximation algorithms [32, 35] de-
veloped for these problems are applicable in our setting.
Similarly, the minimum-capacity-cut metric [36] cannot be
easily formulated in our framework. Because BDP and
weighted shortest paths are both interesting metrics in the
certificate-chain context, one might consider trying to use
a metric of weighted-disjoint-bounded paths for certificate-
chain evaluation. However, the weighted-disjoint-bounded-
paths problem has been shown to be NP-complete for length
bounds greater than 5, and approximation algorithms are
NP-hard [10].

8 Related Work

A certificate-chain-discovery algorithm for SPKI/SDSI
was first proposed by Clarke et al. [16]. A credential-chain-
discovery algorithm for the role-based trust management
language RT0 was presented by Li et al. [30]. In the proof-
carrying-authorization (PCA) framework of Appel and Fel-

6 �
≥0 ∪ {∞} has infinite descending chains; however, the only op-

erations performed are min and max, and hence only a finite number of
values ever arise in any execution. Consequently, the GAP framework still
applies.

ten [3], a client uses the theorem prover Twelf [33] to con-
struct a proof of authorization, which the client presents to
the server. To the best of our knowledge, no one has previ-
ously considered issues such as privacy and trust in the con-
text of certificate-chain-discovery algorithms for trust man-
agement systems or authorization-proof-construction algo-
rithms for PCA. Our algorithm is based on an algorithm
for a generalized shortest-path problem in which weights
on edges are drawn from a semiring. This approach is quite
general, and it is likely that this approach applies to other
formalisms besides SPKI/SDSI.

Pushdown systems are related to “unrestricted hierar-
chical state machines”, which are collections of finite-state
transition systems connected by call and return transitions
[2, 6]. They are also related to the “interprocedural control-
flow graphs” [43] and “exploded supergraphs” [37] used
in interprocedural dataflow analysis. Thus, dataflow anal-
ysis is another possible application of weighted PDSs. The
algorithm for solving GPR problems developed in Sec-
tion 6.4 is related to certain existing dataflow-analysis algo-
rithms [43, 26, 41]. In particular, Sagiv et al. showed how
to compute meet-over-all(-valid)-paths values for multi-
entry/multi-exit hierarchically structured graphs [41]. How-
ever, with respect to previous work on interprocedural
dataflow analysis, Section 6 makes two contributions:

• Conventional dataflow-analysis algorithms merge to-
gether the values for all configurations with the same
top-of-stack symbol. With weighted PDSs, dataflow
queries can be posed with respect to a regular language
of initial stack configurations. This provides a strict
generalization of the kind of answers obtainable via
ordinary interprocedural dataflow-analysis algorithms.

• Because the algorithm for solving GPR problems can
provide a witness set of paths, one can provide a client
of the analysis algorithm with an explanation of why
the answer to a dataflow query has the value reported.

The application of weighted PDSs for interprocedural
dataflow analysis is examined in greater detail in [38].
Model checking of pushdown systems has also been used
for verifying security properties of programs [21, 23, 14].
Thus, another application of weighted pushdown systems is
for verifying security properties of programs, where the ver-
ification process requires knowing interprocedural dataflow
information.

Bouajjani, Esparza, and Toulli [12] independently devel-
oped a similar framework, in which pre∗ and post∗ queries
on pushdown systems with weights drawn from a semir-
ing are used to solve (overapproximations of) reachabil-
ity questions on concurrent communicating pushdown sys-
tems. Their method of obtaining weights on automaton
transitions significantly differs from ours. Instead of de-
riving the weights directly, they are obtained using a fix-
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point computation on a matrix whose entries are the tran-
sitions of the pre∗ automaton. This allows them to ob-
tain weights even when the semiring does have infinite de-
scending chains (provided the extender operator is commu-
tative), but leads to a less efficient solution for the finite-
chain case. In the latter case, their algorithm has time com-
plexity O(co · |Q||∆| · (|Q||∆| + | →0 |)2 · `), i.e., propor-
tional to |Q|3 and |∆|3. All but one of the semirings used
in [12] have only finite descending chains, so Algorithm 1
applies to those cases and provides a more efficient solution.

A number of trust policies or metrics have been pro-
posed to obtain assurance on a certificate binding. The
most well-known notions stem from PGP [50] where each
user acts as a certificate authority by creating certificates
for entities they trust. In a transitive manner, other cer-
tificate authorities (or “recommendors”) introduce new cer-
tificate authorities they trust by creating other certificates.
Assurance through this certificate-chaining process is pro-
vided, in part, by independent certificate paths [50]. Sub-
sequent work studies network connectivity as another trust
metric [35]. Other work studies metrics based on confi-
dence valuations [7, 28, 31], minimum-capacity cuts on cer-
tificated edges that represent financial liabilities [36], and an
algebra for assessing trust in certificate chains [25].

Private or sensitive information may reside within cer-
tificates. This may include names, roles, and/or other iden-
tifying information. Furthermore, chains of authorization
certificates tend to mirror organization structures, business
processes, and personal relations, which may also be sen-
sitive [4]. The principal making the authorization request
may follow a privacy policy to control what information
is disclosed or leaked as part of the authorization process.
Some flexibility may exist so that the requester can choose
from an alternative set of credentials that may be supplied
as part of the proof of authorization. The certificate privacy
problem is related to the long history of work on informa-
tion flow based on a lattice model [5, 17], which attempts
to model controls on the flow of information. Traditional
information-flow policies stemming from the military [48]
are concerned with information-disclosure policies under
which access to data requires a proper clearance (mandatory
access control) and a need to know (discretionary access
control). We can draw from this work in the sense that our
willingness to provide credentials with certain categories of
information are subject to the current “discretionary” ac-
cess request. Furthermore, policies may be based on the
Chinese-Wall security policy [13] under which access to
data is not constrained by attributes of the data in question
but by the data to which the subject already holds access
rights. However, the objective of the current paper has been
to demonstrate a simple privacy metric that quantifies infor-
mation flow for a certificate chain.

Validity time periods have been included in certificate

formats since the early certificate standards [47]. The va-
lidity of the certificate contents is suspect if the current
time is not within the certificate-validity period. Certificate-
revocation lists or directories can be queried to determine if
the credentials are known to be invalid. Stubblebine [44]
formalizes the notion of recent-secure authentication as a
means for authenticating a channel subject to freshness con-
straints. That work provides a means for reasoning about
recent-secure authentication by extending a calculus of au-
thentication [29]. Rivest further develops the case for flex-
ible mechanisms that support authentication subject to re-
cency constraints [39]. Additional recency policies and
methods of analysis for recent-secure authentication were
further developed in a work that provides a monotonic logic
for reasoning about synchronization, revocation, and re-
cency [45]. Other monotonic logics for reasoning about
validity intervals in the SPKI context have also been stud-
ied [22].
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Appendix

A Generation of Witness Sets

Section 6.4 gives an efficient algorithm for determin-
ing δ(c); this section addresses the question of how to ob-
tain ω(c). It may help to think of this problem as that of
examining an infinite graph G whose nodes are pairs (c, d),
where c is a configuration and d a value from D, and in
which there is an edge from (c1, d1) to (c2, d2) labeled with
r ∈ ∆ if and only if c1

〈r〉
==⇒ c2 and f(r) ⊗ d2 = d1.

For a given configuration c, finding ω(c) means identifying
a set of paths σ1, . . . , σk such that path σi, 1 ≤ i ≤ k,
leads from some (c, di) to some (ci, 1), where ci ∈ C, and
⊕k

i=1 di = δ(c). In other words, ω(c) = {σ1, . . . , σk}
proves that δ(c) really has the value computed by Algo-
rithm 1. We note the following properties:

• In general, k may be larger than 1, e.g., we might have
a situation where δ(c) = d1 ⊕ d2 because of two paths
with values d1 and d2, but there may be no single path
with value d1 ⊕ d2.

• We want to keep ω(c) as small as possible. If a wit-
ness set contains two paths σ1 and σ2, where v(σ1) v
v(σ2), then the same set without σ2 is still a witness
set.

Like δ(c), ω(c) will be given indirectly in the form of an-
other annotation (called n) on the transitions of Apre∗ . We
use two data structures for this, called wnode and wstruc.
If t is a transition, then n(t) holds a reference to a wnode.
(We shall denote a reference to some entity e by [e].) A wn-
ode is a set of wstruc items. A wstruc item is of the form
(d, [t], [r], N) where d ∈ D, [t] is a reference back to t,
r ∈ ∆ is a rule, and N contains a sequence of references to
wnodes. References may be nil , indicating a missing refer-
ence.

We can now extend Algorithm 1. The idea is that dur-
ing execution, if n(t) = [S], then l(t) =

⊕

(d,[t],[r],N)∈S d.
An item (d, [t], [r], N) in S denotes the following: Suppose
that Apre∗ has an accepting path starting with t, and c is the
configuration accepted by this path. Then, in the pushdown
system, there is a path (or rather, a family of paths) with
value d from c to some c′ ∈ C, and this path starts with r.
An accepting path (in Apre∗) for a successor configuration

Algorithm 2
1 procedure update(t, r, T )
2 begin
3 → := →∪ {t};
4 d := f(r) ⊗ l(T (1)) ⊗ . . . ⊗ l(T (|T |));
5 s := (d, [t], [r], ( n(t′) | t′ ∈ T ));
6 if l(t) v d then return;
7 if n(t) = nil or d � l(t) then
8 create n := {s};
9 else

10 create n := minimize(S ∪ {s}),
11 where n(t) = [S];
12 n(t) := [n];
13 l(t) := l(t) ⊕ d;
14 workset := workset ∪ {t}
15 end

Figure 8. Modified update procedure.

can be constructed by replacing t with the transitions asso-
ciated with the wnodes in N .

The concrete modifications to Algorithm 1 are as fol-
lows: In line 8, set n ≡ nil . In line 9, create a wnode
n := {(1, [t],nil , ())} for every t ∈ →0 and set n(t) := [n].

Figure 8 shows a revised update procedure. Line 4 of
Figure 8 computes the newly discovered value for transi-
tion t, and line 5 records how the new path was discovered.
In line 6, if l(t) v d, the update will not change l(t) and
nothing further needs to be done. If d � l(t) (see line 8),
the new addition is strictly smaller than any path to t so far,
and n(t) only has to reference the new path. If d and l(t)
are incomparable, line 11 creates a new set consisting of the
previous paths and the new path. Even though d is incompa-
rable to l(t), d might approximate (v) one or more elements
of S. The procedure minimize (not shown) removes these.

It is fairly straightforward to see that the information
contained in S allows the reconstruction of a witness set in-
volving t (see above). Moreover, every wnode created dur-
ing execution contains references only to wnodes created
earlier. Therefore, the process of reconstructing the witness
set by decoding wnode/wstruc information must eventually
terminate in a configuration from C.

During execution of the modified algorithm, several wn-
odes for the same transition t can be created; only one
of them is referenced by t at any moment, although the
other wnodes may still be referenced by other transitions.
A garbage collector can be used to keep track of the refer-
ences and remove those nodes to which there is no longer
any chain of references from any transition.

In the totally ordered case described in Section 6.5, every
wnode can contain exactly one wstruc.
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